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Facial biometrics play an essential role in the fields of law enforcement and forensic sciences. When comparing
facial traits for human identification in photographs or videos, the analysis must account for several factors
that impair the application of common identification techniques, such as illumination, pose, or expression.
In particular, facial attributes can drastically change depending on the distance between the subject and
the camera at the time of the picture. This effect is known as perspective distortion, which can severely
affect the outcome of the comparative analysis. Hence, knowing the subject-to-camera distance of the original
scene where the photograph was taken can help determine the degree of distortion, improve the accuracy of
computer-aided recognition tools, and increase the reliability of human identification and further analyses.
In this paper, we propose a deep learning approach to estimate the subject-to-camera distance of facial
photographs: FacialSCDnet. Furthermore, we introduce a novel evaluation metric designed to guide the learning
process, based on changes in facial distortion at different distances. To validate our proposal, we collected a
novel dataset of facial photographs taken at several distances using both synthetic and real data. Our approach
is fully automatic and can provide a numerical distance estimation for up to six meters, beyond which changes
in facial distortion are not significant. The proposed method achieves an accurate estimation, with an average
error below 6 cm of subject-to-camera distance for facial photographs in any frontal or lateral head pose,
robust to facial hair, glasses, and partial occlusion.

1. Introduction superimposition by means of skeletal remains (Clement & Ranson,
1998; Damas et al., 2020; Rosario Campomanes—Alvarez et al., 2015),
among others.

Individualization or identification techniques are manually per-

Facial identification has become an extremely relevant topic during
the last decade. The revolution of deep learning and automatic facial
recognition systems have led to a market expansion from the fields of
law enforcement and forensic science to areas in the private sector:
retail, multimedia applications, or security. Moreover, the development
of imaging technology has improved both the quality and the availabil-
ity of photographic data, which has also contributed to the application

formed by experts with or without the assistance of automatic sys-
tems. Forensic experts analyze available data, often obtained in un-
controlled scenarios as evidence from caseworks, and then evaluate
the anatomical characteristics of an unknown individual compared to

of multi-modal identification techniques by using 3D facial models or
medical images (Prior et al., 2009; Yoshino et al., 2000). Specifically,
in the field of forensic science, the ability to identify people from only
facial features can be addressed by the application of different kind of
techniques, e.g., facial comparison (Evison & Vorder Bruegge, 2010;
Spaun, 2009), facial reconstruction (Wilkinson, 2010), or craniofacial

a known individual (one-to-one), or many others in large and stan-
dardized databases (one-to-many). For example, facial comparisons can
involve approaches such as holistic comparisons, morphological anal-
ysis, photo-anthropometry, or image superimposition (Zeinstra et al.,
2018). For the analysis to be reliable and conclusive, available data,
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in this case facial pictures, are required to be in acceptable conditions
(quality, resolution, focus, or illumination need to meet a minimum
standard), and the scene context (camera viewpoint, head pose, facial
expression) needs to be as neutral and representative as possible (Ed-
mond et al., 2009; Spaun, 2009). These requirements are established
to ensure that facial traits in the images are faithful to the individual’s
anatomical features and to enable the robust application of forensic
techniques.

Several studies have previously identified the limitations of current
approaches, especially when automatic recognition systems are consid-
ered. Pose, illumination and expression are commonly referred to as the
main challenging factors (Atsuchi et al., 2013; Jain et al., 2012; Tripathi
& Jalal, 2021). However, aspects such as occlusion, gender, ethnicity,
or age also have a relevant influence on the identification procedure in
both human practitioners and automatic systems (Buolamwini, 2018;
Li et al., 2011; Phillips et al.,, 2011). In this work, our interest will
reside in the impact of perspective distortion on facial images, i.e., the
deformation of facial traits (ears, nose, and head shape) as a result of
the subject being close to the camera during the photograph acquisi-
tion (Ward et al., 2018). The effect of perspective distortion in social
interactions is known to introduce bias in human perception (Bryan
et al., 2012; Ttebicky et al., 2016), as well as impair the performance
of facial recognition (Liu & Chaudhuri, 2003; Liu & Ward, 2006). For
that reason, it is also expected to have a negative effect in automatic
recognition systems (Damer et al., 2018; Riaz & Beetz, 2012; Valente
& Soatto, 2015).

There is a strong interest in improving the accuracy and robustness
of current identification techniques to maximize their quality and value
as court evidence. As a result, various efforts have been made to address
different sources of uncertainty involved in the procedure from an
anatomical point of view (Bicalho et al., 2018; Campomanes-Alvarez
et al., 2018). However, it is important to highlight that knowledge of
the scene context and acquisition parameters of the camera is essential
prior to the application of any anatomical analysis. In most situations,
configuration parameters of the camera can be extracted when the
metadata of the image is available, while head pose can be easily
obtained by visual inspection or by using an automatic pose estimation
tool (Lathuiliere et al., 2017; Merckx et al., 2010; Suman, 2008). In
contrast, the estimation of subject-to-camera distance (SCD) poses a
major challenge while having a substantial influence on the super-
imposition or facial comparison between two pictures, as thoroughly
analyzed by Stephan (2015). There is an intimate relationship between
distance and focal length that can result in a misperception where the
size of an object can be analogous for different combinations of SCD
and focal length (He et al., 2018).

The estimation of SCD in facial images opens the possibility of quan-
tifying the differences in distortion among two sets of photographs and,
more importantly, to reproduce the conditions of the original scene
when 3D facial models or skeletal remains are available. This feature is
an essential consideration for both manual and automatic identification
techniques, improving the reliability of one-to-one comparisons by
measuring and controlling a major source of uncertainty.

In summary, the main contribution of this paper is two-fold:

» The introduction of a deep learning approach to estimate SCD
of facial photographs for its use in human identification applica-
tions. A loss metric is also defined to guide the learning procedure
based on the perspective distortion.

+ A novel benchmark dataset to train and evaluate the behavior of
the machine learning model in realistic scenarios.

2. Background
Pictures, either analog, digital, or computer-generated images, are

essentially the result of projecting light from a 3D scene through a
point onto a 2D plane. This is known as perspective projection, and
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its geometry is represented by a camera model. Such model provides
the necessary mathematical formulations to compute the coordinates
of a point in the photograph from its corresponding point in the 3D
scene. Thus, the camera model specifies a set of camera parameters that
will define the specific characteristics of the photographic scene at the
moment of acquisition. For instance, those parameters can define the
camera position and its orientation, the angle of view (focal length),
the depth-of-field (aperture), or the sensor size that will determine the
physical dimensions of the image.

For the sake of simplicity, a pinhole camera model is assumed to
represent an ideal system not affected by optical distortions of lenses,
i.e, barrel, pinhole, or tangential (Kingslake, 1992). In practice, camera
calibration or photographic software can easily correct the effects of
different lens distortions. However, a completely separate category
of optical aberration that can affect a camera model is perspective
distortion. Its effect is solely determined by the relative position of the
camera in the scene and it is often neglected in applications involving
facial analysis. In portrait photography, this parameter will determine
the subject-to-camera distance. A combination of wide lenses and short
distances will generate a large magnification of facial features, intro-
ducing a noticeable variation in the perceived depth between nose and
ears. Such effect is common in the ‘selfie’ picture format (Ward et al.,
2018), where elements closer to the camera (nose, eyes) appear en-
larged in contrast to far elements (ear, hair), which appear compressed.
Fig. 1 visually illustrate the effects of facial distortion in relation with
the SCD.

There is no consensus in the literature to establish a tentative
distance where perspective distortion can be considered negligible
for facial analysis. Distances around 2 m are often considered free
from facial distortion due to the influence of human perception and
regular habits of social interaction. In a recent study on facial dis-
tortion, Stephan (2015) analyzed how the relationship between SCD
and perspective follows a logarithmic decay. Considering average facial
dimensions, the decay reaches an acceptable value of 1% distortion
at 12 m. According to this study, photographs where SCD is above
6.1 m could be compared within that 1% distortion, which renders an
anatomical error of 2 mm in real-sized facial comparisons.

The estimation of the perceived depth of a scene is hindered by an
optical principle, the relationship between SCD and focal length (He
et al., 2018). As the focal length parameter controls the field of view,
a similar scene could be obtained at different combinations of SCD
and focal length, disregarding the effects of perspective distortion.
Accordingly, in order to estimate the SCD, knowledge of the focal
length is imperative. This constraint can be overcome by accessing the
digital image metadata to obtain information about the camera type,
sensor size, focal length, or image resolution when available. The angle
of view is controlled by two camera parameters: focal length and sensor
size, both of which determine how the scene context is captured.

A standardized size of 36 mm X 24 mm is usually considered for
the image sensor. This standard, also known as full frame or 35 mm
equivalent, is established as reference system to provide comparison
among different digital camera models and manufacturers with respect
to the 35 mm film camera format. The focal length of any lens is relative
to a specific camera film or sensor size; e.g., a 50 mm lens meant for
a 35 mm film camera will exhibit a larger focal length when mounted
on a camera with a smaller sensor size. For this reason, focal length is
often reported as “35 mm equivalent focal length” format, meaning that
the focal length figure reported is relative to a 35 mm camera sensor,
as opposed to the specific camera sensor. The choice of the 35 mm
format is due to historical reasons. In this paper, we also follow this
convention. FacialSCDnet can be used with any camera sensor size by
simply providing the 35 mm equivalent focal length value, which can
be obtained using Eq. (1). It should be noted that the 36 is not a typo,
but a correction value.

focal length * 36 mm

focal length (35 mm) = (@)

camera sensor width
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Fig. 1. Perspective distortion effects over facial features for photographs taken at a
independent of the camera focal length.

3. Related work

In the field of machine learning, the topic of depth estimation from a
single photograph has recently gained a lot of attention. This problem is
addressed as a dense regression task where each pixel of the photograph
is mapped to a depth value by using implicit pictorial cues (Van Dijk
& De Croon, 2019). However, the estimation results in a depth map
where information is encoded relative to the objects of the scene, not
the camera itself. Therefore, information about SCD cannot be extracted
unless the real size of the objects is known. Nevertheless, this approach
has many applications such as pose estimation, object detection, or
segmentation (Cho et al., 2021; Shotton et al., 2013). An interesting
technique for depth estimation is based on defocus estimation (Gur &
Wolf, 2019; Maximov et al., 2020). Instead of relying on texture, size,
or perspective cues, the blurring effect of out-of-focus objects is used to
guide the estimation, taking into account the camera’s depth-of-field.

On a related subject, different approaches have been proposed to
address the effects of perspective in facial images, aiming at correcting
or recovering natural features from distorted facial images (Fried et al.,
2016; Shih et al., 2019). Such methods are oriented towards multi-
media applications with marginal use in identification applications as
they involve an additional manipulation of the photographic evidence.
Nevertheless, they provide useful knowledge for its application in the
field at hand. For instance, Zhao et al. (2019) introduced a method for
perspective undistortion where the first step is based on a DL network
for camera distance prediction. In this work, SCD is not estimated but
classified into different sampled distances to determine the amount of
distortion to correct in subsequent steps.

The first method to address the metric estimation of SCD from a
single photograph was proposed by Flores et al. (2013), where a set of
facial landmarks is used in a series of synthetic images to provide an
estimation of facial pose and camera distances between 10 cm and 3 m.
Similarly, Burgos-Artizzu et al. (2014) also followed a computational
approach based on facial landmarks to estimate SCD on a real dataset
of portraits, where subjects were photographed at seven distances from
60 cm to 5 m. Their findings stressed the difficulty of obtaining accurate
results for longer distances, and a possible bias as a consequence of the
diverse physiognomy of the human face.

As shown in Section 2 and demonstrated by He et al. (2018),
the estimation of the camera distance is known to be a challenging
problem, highly correlated to other camera parameters as the focal
length and image resolution. Therefore, studies such as Flores et al.
(2013) or Burgos-Artizzu et al. (2014) obtained poor results in their
attempt to estimate SCD due to image cropping and the combination
of different focal lengths in the same dataset. Other approaches derive
SCD estimation from anatomical features, such as face size (Shoani
et al., 2015), eye distance (Rahman et al., 2009; Valente & Soatto,
2015), or a combination (Kumar et al., 2013) using computer vision
techniques in a specific and calibrated camera where the focal length
is known.

different SCD: 0.5 m, 1 m, and 3 m. Such effects vary in relation to distance, and are

Recently, researchers at Google AI released an open-source
framework for machine learning applications called Mediapipe.! In
addition to face, landmarks, or pose detection, one of its applica-
tions allows to estimate SCD by tracking the iriis size in frontal
photographs (Ablavatski et al., 2020). This application can be used
when EXIF data is available, in frontal images where iris is visible, and
the individual is below 2 m from the camera location.

To the best of our knowledge, the only approach focused on es-
timating SCD specifically for facial identification applications is Per-
spectiveX, proposed by Stephan (2017) to model uncertainty in the
craniofacial superimposition technique. It is also based on the location
of an anatomical feature, the palpebral fissure length between two
easily determinable and accurate landmarks. This method allows for
an accurate estimation of SCD for a known focal length. The limitations
of this technique include as requirement the manual interaction of an
expert to annotate the landmarks, and a head rotation below 30°. The
approach consists on the application of a straightforward equation, yet
it requires the estimation of the real size of the palpebral fissure from
landmarks according to anatomical studies that depend on a specific
age group, sex, and population.

4. Proposed method

In order to achieve the automation of the SCD estimation, we
propose the application of a Deep Learning (DL) approach capable of
regressing the metric distance of individuals directly from photographs.
Following a deep architecture we avoid a critical constraint, i.e., the
requirement of detecting a particular anatomical feature to guide the
estimation procedure. As seen in the previous section, such constraint
limits the application of current methods to frontal or quasi-frontal
facial images. With this approach we aim to ease the estimation of SCD
at any head pose from frontal to lateral profile.

Recent technological developments have increased the popularity
of neural networks with the surge of DL and its application to different
domains (Lecun et al., 2015). In particular, the use of Convolutional
Neural Networks (CNNs) has widespread for applications involving im-
age processing due to their capabilities for feature learning. However,
DL architectures are known to require a significant amount of training
data to negate the effects of over fitting and provide generalizable
results. To overcome this problem a technique known as transfer learn-
ing is usually applied, where complex or deep architectures can be
reused and adapted to a different problem in less time and requiring
a smaller amount of data. For that purpose, architectures known to
perform well in a wide range of problems have been usually considered,
e.g., ResNet (He et al.,, 2016) or VGG-16 (Simonyan & Zisserman,
2015).

In particular, we take advantage of the pre-trained parameters of
the VGG-16 network (Simonyan & Zisserman, 2015), widely recognized

1 Google Mediapipe tool is available at https://mediapipe.dev/
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for its ability of migration learning tasks. As an example, architectures
based on VGG have been successfully proposed for facial recogni-
tion (Parkhi et al., 2015), which motivated our choice for this contribu-
tion. Therefore, the convolutional layers of the VGG-16 model used in
our proposal are pre-trained with the ImageNet dataset (Russakovsky
et al., 2015), and fine-tuned with a dataset specifically designed for the
addressed problem, introduced in Section 5.1.

Due to physiognomic variations of facial shape and size across dif-
ferent individuals, estimating SCD at large distances poses a significant
challenge. The relationship between SCD and perspective distortion is
that of a logarithmic decay. This means that small SCD values corre-
spond to a large distortion, while the distortion decreases promptly as
the SCD increases, becoming almost unnoticeable beyond 6 m. As a
consequence, a small mistake in estimating the SCD will have a large
effect on the predicted amount of distortion depending on whether
the true SCD value was large or small. For this reason, we employed
an error function (or metric) that penalized misestimation of low SCD
values. Thus, the loss function is defined as the averaged absolute error
of the relative facial distortion as follows:

ZL] |J’i - xi|

Distortion = —m——, 2)
n

where y; correspond to the true label, and x; to the predicted value of
the measured facial distortion, computed as the distortion factor (Df):

1

_ 3
SCD

1+ =

Df =

In this equation, d = 12.6572 cm corresponds to a value derived
from geometric calculations performed by Stephan (2015) to experi-
mentally obtain the distortion factor over a representative human head
of average size, relative to the SCD in a photograph. According to adult
human measurements, d is similar to the average facial depth (Brinkley,
et al., 2016). Thus, this constant value is used as a conversion factor
to establish a relationship between facial features and the perspective
distortion affecting the photographs.

5. Experimental framework
5.1. Dataset generation protocol

The specific constraints of the problem of SCD estimation require
the focal length of the photographs to be known beforehand. ‘In the
wild’ datasets, commonly used in DL applications as is the case of
facial recognition, landmark detection, or pose estimation, are not
appropriate for this purpose. Such datasets based on found data avail-
able on the internet lack the necessary information to address this
problem, as images are usually cropped and image metadata is not
available. Burgos-Artizzu et al. (2014) introduced a dataset specifically
designed for SCD estimation, named Caltech Multi-Distance Portraits
(CMDP), where images were cropped and processed to fit a common
format. Unfortunately, focal length varies along with the sampled
distances in the CMDP dataset, which renders it impractical for this
problem. Therefore, in the absence of a publicly available dataset for
this purpose, we detail in this section the procedure followed to gather
a specific dataset of facial images at a distance.

In order to collect an optimal amount of data required to train
the CNN, the proposed dataset features two collections of data that
expand the number of available images. First, a synthetic set of images
have been compiled by using the Stirling ESRC 3D Face database,”
generating simulated photographs using 3D face models with different
expressions. In particular, a total number of 315 facial models from
54 different individuals are used to generate approximately 150 K
synthetic photographs. The second collection corresponds to digital

2 Stirling ESRC 3D Face database is available at http://pics.psych.stir.ac.
uk/ESRC/index.htm
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photographs of 28 individuals following an acquisition protocol de-
tailed in Fig. 2. Additionally, a subset of 3D facial models for 15
volunteers among the participants have been acquired using a 3D
physiognomic range finder (Fiore, NEC Corp., Tokyo, Japan) (Ogawa
et al., 2015). This subset is used to complement the collection with
additional synthetic images and to validate the distance markers used
during the acquisition. Photographs have been acquired using two
digital cameras, a Nikon D5200 and a Fujifilm X-T30, equipped with
a 18-55 mm zoom lens, and a Huawei P20 smartphone which camera
is equivalent to a focal length of 27 mm. A total number of 20 K digital
images comprise this second set. The structure of the collected dataset
is detailed below:

+ Focal length. Four different focal lengths (in full-frame or 35 mm
equivalent) have been considered: 27 mm, 35 mm, 50 mm,
85 mm. These focal lengths were chosen as standard or common
lens in the market, from wide angle to medium telephoto lens,
in an effort to represent commonly available photographs. In
particular, most smartphones nowadays contain a camera lens
equivalent to 26-28 mm, while 85 mm is regarded as preferred
choice for portraits with normal facial features.

Distance. As shown in Section 2, perspective distortion affects
facial images as a logarithmic decaying function of the distance.
For that reason, a total of twelve different distances from 50 cm to
6 m were sampled, measured from the focal plane of the camera
to the eye plane of the individuals. Specifically, distances were
spaced at increasing intervals of 10 cm, 20 ¢cm, 30 cm, 50 cm,
and 1 m.

Pose. Seven different head poses were photographed from left
profile to right profile, roughly at each 20° of rotation. This
movement was performed twice, as participants were instructed
to remain in a neutral facial expression the first pass, and smile
or speak during the second one. In total 14 photographs were
obtained per participant at a determined distance, per each focal
length. To add variability in the sample, some individuals were
photographed standing while others were seated in a rotatory
chair. As for the augmented dataset, synthetic photographs were
simulated for each facial model at a random rotation in the
horizontal axis (—90°, 90°), and inclinations in the vertical and
distal planes in the range (—15°, 15°). As facial models have a
fixed expression, 10 simulations were generated for each distance
and focal length.

To summarize, the photographic dataset gathered to validate the
proposed method include a representative sample of various head
poses, facial expressions and SCD distances, in addition to different
physiognomies, occlusions related to facial hair or accessories such as
glasses for people of diverse ethnic groups, gender and age. The dataset
will be publicly available at the skeleton-id.com website. (see Section 7,
data availability).

5.2. Experimental methodology

To deal with the ambiguity generated by different combination of
SCD and focal lengths, we define four deep learning models, each one
associated with one of the focal lengths considered in the dataset. For
simplicity, we refer to this system as FacialSCDnet.

The structure of each CNN is based on VGG-16, initialized with the
pre-trained Imaganet weights and stripped of the top layer. In order
to adapt the architecture to the specific problem of SCD estimation,
the five convolutional blocks are preserved, and two fully connected
layers are attached and trained from scratch. The last layer of the
model consists of a dense linear activation that performs the regression
task. Thus, the output of the network determines a predicted metric
distance for a particular facial photograph. Fig. 3 provides a visual
representation of the CNN architecture.
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Fig. 2. Synthesis of the photograph acquisition protocol depicting the conditions of the scene: focal lengths used, range of distances, and head pose rotation angles. Different
distances were considered for separate volunteers to cover a wide variety of distances in the dataset.
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SCD
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Linear
Activation
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Trainable Parameters:
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Fig. 3. Diagram representing the network architecture based on VGG-16. Fully connected layers were re-trained to adapt the network to the regression problem of SCD estimation.

Table 1

Training parameters considered for the four different networks of
FacialSCDnet, along with the range of values considered during
hyperparameter tuning.

Parameter Options Best
Optimizer [adam,adagrad,rmsprop] adam
Learning rate [107°, 1073] 1074
Batch size [32,128] 64
Patience [2,4] 3
Early stopping [4,8] 6

A hyperparameter tuning phase was considered to determine an
optimal configuration for the proposed architecture. In particular,
the Tree-structured Parzen Estimator Approach (TPE) (Bergstra et al.,
2011) algorithm was employed to guide and speed-up the search
procedure, and the final parameters used to train the models are shown
in Table 1.

The model training process followed a two-stage sequence. First,
the models are trained over the larger synthetic dataset to learn the
relationship between SCD and facial features. Then, models are fine-
tuned using the real dataset. Such approach allows the CNNs to perform
the estimation task by focusing only on facial features while other body
parts are ignored.

The two datasets, synthetic and real, were shuffled and splitted
in train, validation, and test subsets following a 55:15:30 proportion.
To prevent data leakage, the test set was constructed by selecting all
the images (with different head poses) at a particular distance from
random individuals. In addition to that, we ensure that all the real
photographs (at every distance and focal) from at least three individuals
were unseen by the CNNs until the test stage. A series of performance

measures were considered to both guide and validate the regression
model. As mentioned in Section 2, the loss function is based on the
relative facial distortion. In addition, the mean absolute error (MAE)
and mean relative error (MRE) were computed between the predicted
and the actual SCD of each photograph.

All the experiments were performed using a platform configured
with forty-cores CPU Intel(R) Xeon(R) CPU E5-2630 (2.20 GHz), and
NVIDIA TITAN XP 12 GB GPU running on Ubuntu 16.04.2 LTS. The
software tools included CUDA 8.0, CUDNN 7.5, Python 3.6. The exper-
iments were implemented in the framework Tensorflow 1.14 using the
pre-trained model and weights from Keras 2.2.4. Image augmentation
was used during training to increase the robustness of the network.
An online augmentation was performed to provide different random
backgrounds to the images, adding rotation, blur, noise, and saturation,
color, and illumination changes into the training images (see Fig. 4).
In addition, a partial occlusion of the images was also considered by
removing parts of the original image (cutout) or a percentage of the
total image (pixel dropout). The library Imgaug was considered for
that purpose in order to avoid overfitting the data. Table 2 summarizes
the considered augmentation techniques, the probabilities for their
application during each training batch, and the ranges for the different
effects applied to the input images.

6. Experimental results

The results presented in this section correspond to the evaluation of
the four different neural networks over the test partition of the data.
Table 3 summarizes the results of the three considered metrics (MAE,
MRE, and relative distortion). The 99th percentile of the resulting error
for each metric is included in this table to gain insight of the prediction
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Fig. 4. Example of augmentation techniques applied to different photographs during
training.

Table 2
Distortion margins for the augmentation techniques, and probabilities
for its random application on training images.

Augmentation p Value
Translation (% per axis) 1.0 [-20,20]
Rotation (°) 1.0 [-15,15]
Blur 0.25 [0.1,1.0]
Gray scale 0.25 [0,1]
Hue and saturation 0.25 [-10,10]
Gaussian noise 0.25 [0,0.5]
Simplex noise 0.1 [0.8,1]
Cutout (% image size) 0.1 [0.2,0.5]
Pixel dropout (% of pixels) 0.1 [0,10]

data distribution. In order to complement the analysis, the coefficient
of determination (R? score) is included to measure the goodness of
the prediction models when evaluating the test set. Fig. 5 displays the
distribution of the results according to (a) the prediction error, and (b)
the MRE. Most of the predictions occur below the 10 cm error mark
and 2.5% of relative error.

According to the results, the four networks of FacialSCDnet are
able to predict the SCD precisely, with errors below 5 cm (MAE) or
3% (MRE) on average. Such precision on the prediction of the metric
distance translates into an average error of 0.2% when considering the
facial distortion metric. The 99th percentile draws a relevant detail:
for the majority of the predictions, the resulting error is much lower
than 80 cm, and more importantly, the error in terms of relative facial
distortion is at most 1%. The R? score measurement confirms the
regression models offer a good fit for a precise estimation of the SCD
according the test data.

A comparison between the actual distances of the test photographs
and the predictions for each FacialSCDnet model is depicted in Fig. 6(a),
alongside a visualization of the statistical distribution of the results
according the metric error distance (Fig. 6(b)). Both graphics allow us
to extract two main conclusions: (i) higher prediction errors occur at
longer distances, and (ii) the model for the longer focal length (85 mm)
offers a better regression performance compared to the other models,
with considerably lower maximum errors.

Conclusions derived from Fig. 6 can be explained by the substantial
differences in scale proportion of the individuals in the photographs
when comparing shorter to longer focal lengths. Therefore, for a longer
focal length, i.e. 85 mm, the area of the photograph occupied by the
individual’s head will be larger in comparison with photographs at the
same distance using a shorter focal length. In such cases, the CNN
model is supported by more features to estimate a correct SCD. In
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Fig. 5. Histograms depicting error distribution for the different focal lengths considered
in terms of (a) prediction error (cm), and (b) mean relative error (%).

contrast, the CNN model trained to predict photographs correspond-
ing the shorter focal length (27 mm) presents a considerable error
for photographs at larger distances (6 m). Nevertheless, due to the
logarithmic relationship of SCD and facial distortion, results are within
acceptable limits for its application for facial comparison, i.e., below
the 1% threshold (Stephan, 2015). More importantly, predictions under
2 m are more precise due to the considered distortion metric, which
aligns with the necessity for accuracy at closer distances in order to
minimize the effects of the perspective distortion. In addition, it is
worth noting that some photographs, i.e., the combination of a short
focal length and distances larger than 3 m, are unlikely to take part in
a real identification scenario.

In an attempt to provide interpretability for the behavior of the
models regarding the regression task, Fig. 7 depicts a number of atten-
tion layer representations for the neural networks. In particular, differ-
ent visualization techniques, i.e., gradient saliency, guided backpropa-
gation, deep Taylor decomposition, and layer-wise relevance propaga-
tion, are shown here to provide insight of the image features guiding
the prediction results (Alber et al., 2019). Such figure also serves as
confirmation that the models are focusing in relevant parts of the facial
physiognomy to perform the predictions. From these examples, it is pos-
sible to identify how background information is mostly ignored, as well
as facial hair without heavily misleading the prediction. Meanwhile,
facial features seem to draw most of the attention in contrast to other
parts of the body regardless its posture (seating or standing).

A complementary experimentation has been performed, and sum-
marized in Table 4, with the aim to quantitatively study the influence
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Table 3
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Prediction results for each FacialSCDnet model according to MAE, MRE, and relative distortion metrics. Mean, standard
deviation, median, and 99th percentile error results are summarized for each metric. Measurement of the coefficient of

determination is also shown.

Evaluation Metrics f27 55 85 Total
Mean (sd) 5.9 (9.8) 4.5 (8.5) 5.3 (11.0) 3.4 (5.0) 4.8 (9.1)
MAE (cm) Median 2.7 2.6 2.2 2.4
99th perc. 51.0 76.6 24.2 51.7
Mean (sd) 29 3.1 2.3 (2.8) 2.6 (2.8) 2.2 (2.1) 2.5 (2.8)
MRE (%) Median 1.7 1.7 1.5 1.6
99th perc. 14.1 15.0 9.0 13.4
Mean (sd) 0.2 (0.2) 0.2 (0.2) 0.2 (0.2) 0.2 (0.2) 0.2 (0.2)
Distortion (%) Median 0.1 0.1 0.1 0.1
99th perc. 1.1 0.9 0.9 1.0
Adjusted R? score 0.994 0.996 0.994 0.998 0.996
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Fig. 6. Graphics illustrate the resulting prediction error (cm) for each one of the
considered models: (a) depicts the direct comparison of actual to predicted SCD
distances; and (b) violin plot that outlines the comparison of the statistical error
distribution for distances below and above a threshold of 2 m.

of the real data amount on the model accuracy. One of the main motiva-
tions for carrying out this experimentation is to know the approximate
number of facial photographs needed to fine-tune a new SCD estimation
model. This number becomes relevant when optimizing the acquisition
of data to train specific models for focal distances other than the four
used in this work. Results show a sustained accuracy improvement for
each test, which suggests the considered amount of data is adequate to
obtain a competitive performance. The main conclusion derived is that

Table 4

Analysis of training sample influence on the performance of FacialSCDnet. MAE is
reported for a incremental percentage of data used to fine-tune the four networks.
100% column corresponds to the entire real dataset. Overall change is computed as
the average (O-N)/0x100 for all networks at each increment of data, with O: original
value, N: new value.

MAE 25% 50% 75% 100%

f27 13.7 9.1 6.2 5.9

35 12.5 10.6 8.7 4.5

f55 14.2 9.5 6.9 5.3

85 7.7 6.8 5.3 3.4

Overall change (%) - 33.6 32.8 41.9
Table 5

PerspectiveX (Stephan, 2015) results for the evaluation metrics:
MAE, MRE, and relative distortion. Mean, standard deviation,
median, and 99th percentile error results are summarized for
each metric.

Evaluation metrics PerspectiveX

Mean (sd) 38.9 (30.2)
MAE (cm) Median 31.9

99th perc. 133.9

Mean (sd) 15.3 (9.6)
MRE (%) Median 14.0

99th perc. 44.2

Mean (sd) 0.7 (0.6)
Distortion (%) Median 0.6

99th perc. 2.9

networks based on longer focal lenses may require less data to achieve
a similar level of accuracy.

6.1. Comparison against state-of the-art

A subset of synthetic photographs are used here to establish a com-
parison with PerspectiveX (Stephan, 2017). The use of 3D models allow
us to accurately locate the landmarks required for the measurement
of the palpebral distance. In particular, 1080 frontal or quasi-frontal
images (with a maximum of 15° of lateral rotation) from the synthetic
dataset were considered for this comparison. Results are displayed in
Table 5. It is worth noting that PerspectiveX factors two error sources in
the predictions: the estimation of the palpebral fissure length, and the
estimation of the SCD from a known measurement. However, despite
its simplicity, the results obtained by PerspectiveX are within the 1%
distortion considering the average values. The 99th percentile shows
how the distortion error can reach a 3% error in some situations, much
higher than results obtained by our proposal (1.1%). In terms of metric
errors, the advantage of FacialSCDnet is noticeable, where the average
MAE (4.8+9.1 cm) contrasts with the results of PerspectiveX (38.9+30.2
cm).

When compared to PerspectiveX, FacialSCDnet proved to be a reli-
able and robust method, able to provide highly accurate estimations,
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Fig. 7. Visual representation of layer attention for two of the trained CNNs (f27 and f55) over images of the test set. From left to right, images show: input image with a random
unseen background, gradient saliency, guided backpropagation, deep Taylor decomposition, and three different configurations for the layer-wise relevance propagation method:
epsilon rule, alpha, and beta flat presets. Actual SCD and predicted result are also shown next to the images. Examples with larger prediction errors (second and sixth row) are

still within acceptable margins (< 1%) of facial distortion.

especially at closer SCD distances. Furthermore, CNNs are not con-
strained by the necessity of identifying anatomical features to guide the
prediction task, increasing the flexibility of our proposal to deal with
lateral photographs. Such benefit is also relevant when comparing with
other approaches such as Google MediaPipe Iris (2020). Authors report
different results when comparing photographs with facial accessories
such as glasses (4.8 + 3.1% MRE), or without (4.3 + 2.4% MRE).
In contrast, FacialSCDnet manages to obtain more accurate results
(2.5 + 2.8% MRE) in an heterogeneous dataset, which outlines its
robust performance when considering different head poses, expressions,
and facial occlusion from facial hair or glasses.

7. Conclusion

In this paper, we introduced a fully automatic approach for subject-
to-camera distance estimation in photographs to deal with the effects
of perspective distortion, named FacialSCDnet. A Convolutional Neu-
ral Network was considered for distance regression without requiring
human interaction nor explicit anatomical information to guide the
procedure. This opens the possibility of rapidly estimating differences
in facial distortion between photographs when performing any form
of facial identification, a factor that is crucial for techniques involving
photographic comparison.

To train and assess the performance of our proposal, a novel bench-
mark dataset was collected using a combination of synthetic and real
photographs taken at different distances from 0.5 to 6 m, where fa-
cial distortion is more pronounced. The factor of not requiring any
anatomical information such as facial landmarks or iris detection imply
our method is robust to partial occlusion and profile poses where eyes
are not visible, in contrast to the limitations of current methods in the
literature.

The results revealed that an accurate estimation of the SCD can be
achieved automatically. Regarding the comparison with state-of-the-
art methods, FacialSCDnet obtained remarkable results, outperforming
such methods when using frontal images. In addition to introduce the

flexibility to predict using lateral or profile poses, the proposed method
is robust to occlusion (facial hair, glasses), facial expression, and noise.

We acknowledge the dataset used in this contribution is limited
and, as reported for other works based on deep learning, can be
biased by the reduced number of individuals from the acquired pho-
tographs for the real dataset and the fact that it was comprised by
only adults. Nevertheless, no differences were found during testing on
individuals with distinct features never seen from the networks, nor
the use of synthetic or real images. To further increase the robustness
of our proposal to gender, ethnicity, and age, we intend to augment
the number of photographs available in the dataset. In addition, we
aim to extend the functionality of FacialSCDnet by integrating the
estimation of head pose along with the SCD prediction. Moreover, as
future work we will perform an extensive study on the impact of SCD
estimation for computer-assisted human identification methods such as
facial comparison (Martos et al., 2018), or craniofacial superimposi-
tion (Campomanes—Alvarez et al., 2018; Damas et al., 2020; Rosario
Campomanes—f\lvarez et al., 2015).
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Data availability

The photographic dataset described in Section 5.1 will be publicly
available at the skeleton-id.com website. Furthermore, the website
will host a web service for SCD estimation in photographs based on
FacialSCDnet. Any additional data regarding the trained models can be
shared with the community upon formal request to the authors.
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